Tungsten Carbide Tipping Paper Cutting Knives for ...

20 May.,2024

 

Tungsten Carbide Tipping Paper Cutting Knives for ...

Product Description

The company is the world’s best china impact resistant chrome carbide supplier supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.



Tipping Knives are mounted onto drums of Protos tobacco machines for the cutting of tipping paper. Knives are made from tungsten carbide material and there are 12 knives in one set. Tungsten carbide grain size is carefully chosen to balance the cork knife's strength and wear resistance. This tipping knife we have both size 124×25.8×1.1mm and 124×25.5×1.1mm. 

With sufficient experience in making carbide products, LCUT has been researching in such tipping knives for years and developed our own formula which is most suitable for the cutting of cork paper. The working life was confirmed by our customers around 5-15% longer than common carbide material that were available in the market. Beside longer working life, our cork paper cutting blade also performs better in impact resistance because of the higher tensile strength it get from our special formula.

                                                                                                                                                

Product Features

  1. We are factory provides customers with newer and better products and excellent after-sales service;

  2. Handling components of very tight tolerance and very complex geometry;

  3. Custom-made

     

    Standard or Non-Standard size are all welcomed;

  4. All products go through in process and final inspection;

  5. Stable and continuous production ability;

 

Product Parameters


Available at the moment:


 

2599FA4

1-4001.5 A

Full Carbide, Super Finished

OAF4031

1-4004.5 A

Full Carbide, Super Finished

138MAX605U-1

1-4002.8 A

Tipping knife for drum

U 549FA129F

1-4005.8 A

Tipping knife for drum

U 549FA76F

1-4003.8 A

Tipping knife for drum

280FC242-1

1-4010.8 A

Tipping knife for drum

Lcut Knives and Blades

Why Use Lcut Machine Knives?



Lcut is technically reliable with over 30+ years of manufacturing experience in all types of industrial knives and blades. When you use Lcut knives and blades, you save money and worries about replacing them.
We are located in one of the largest production bases of Tungsten carbide products, we have a strong ability to access almost all quality steel and other materials available in the industry. Lcut manufactures all your knives and machines from the best quality steels procured from ISO 9001 certified mills and suppliers.
If you are looking for machine knives with extra longevity, less machine downtime, and fast turnaround time, Lcut is ready to help, we are super easy to work with!

What customized knives and blades does Lcut produce?


You can contact Lcut sales engineers and make your own customized order to meet the exact requirements you need.
We can customize to your individual needs of below criteria: 

  1. Grades of steel

    1. Carbide

    2. Ceramic

    3. High carbon steel

    4. Hardened tool steel

    5. High-speed steel

    6. Stainless steel steel

    7. More

  2. Tooth designs

    1. Single/Double Bevel

    2. Perforated

    3. Serrated

    4. Zigzag

    5. Chisel

    6. EZ Open

    7. Many more

  3. Coatings/Notch

    1. Carbide

    2. Titanium Nitrate

    3. More

      For more china manipulator welding machine supplierinformation, please contact us. We will provide professional answers.

What materials does Lcut make its knives and blades?


Basically, the most widely used material in Lcut knives and blades are:

  1. Solid carbide & Carbide Inlaid (Precise cut, extra hardness and durability)

  2. Ceramic (Precise thin cut, widely used in film& foil, fabric cutting applications) 

  3. Hardened tools steels (D2, A2, A8. S7, 1095, 1075, highly durable, moisture and abrasion resistant)

  4. High-speed steels (M2 HSS, M4 HSS, ASP23, High levels of hardness, friction, and heat resistance)

  5. Stainless steel grades (300 and 400 series, Stain and rust resistant, corrosion resistant, cost-effective) 

  6. High carbon steels (52100 steel, Extra hardness, corrosion and wear resistance) 

  7. CPM 10V/9V Cold/Hot steel (Stand for extreme cold and hot temperature, high impact, and stress, corrosion resistant)

  8. Spring steel (High yield strength for high-stress cutting jobs)


Lcut makes knives and blades from a wide variety of different materials. We select the best material as per what blades you need to cut and the consideration of the heat, cold, and moisture in the cutting applications.

What coatings on the blades does Lcut provide?



Lcut can make your knives and blades with any of the below coatings:

  1. Titanium Nitride Coating

  2. Titanium Carbon Nitride

  3. Electroless Nickle Plating 

  4. Hard Chrome

Inspection& Packaging

Lcut makes sure evey pc of your knives and blades is packed in new and safe export packing so that no damages occur during transportation with different means to the point of destination. 

Before shipping, all your knives and blades will have proper anti-rust treatment to ensure protection against damages during transportation and storage. 

 

About Lcut


1. Are you manufacturer?


Yes, Lcut is machine knives manufacturer and we are ready to be your factory partner for all types of industrial knives and blades, regardless of industries and applications.


 

2. What does Lcut Mean?


"L" comes from the initial letter of our company's Chinese name Linglite, " cut" is what we specialize in, we get the cut your want!


 

3. How long has Lcut been established?


Lcut was created in 1990s by Mr Zhang Yongxiang, during all these 30+ years, the company has gradually grown to be the leading manufacturer of machine knives and blades in the industry. Apart from conventional steel-made machine knives and blades, Lcut has quickly developed its own production lines of solid carbide knives and ceramic blades. We have been striving to increase our manufacturing capabilities and reduce costs so that you can get the best cut with the most competitive prices in the market.


 

4. What Does Lcut do?


Lcut has over 18000 square meter's production workshop, 136 experienced workers, and QC in house, we have the technical know-how to manufacture and supply every machine knife and blade you need, no matter what edge or coating or steel you need, we can get the cut you want.


 

5. 

How soon can Lcut deliver the machine knives?


Lcut can manufacture and deliver most of the standard and customize knives and blades in 2-3 weeks. We also accept urgent orders depending on the specs and materials availability.

 

6. How to work with Lcut?


Working with Lcut can be simply easy. You send us the drawings/sketches/ prints or just samples, our technical team can identify any knives and blades.
After quotation and order is confirmed, Lcut production team will ensure your orders are processed in all right hands and finished in a timely manner. We conduct 100% inspection on all knives and blades we manufacture, full quality inspection reports will be provided upon request.
Lcut can handle DAP&DDP shipping and delivery to your door as well.
In conclusion, You want it, we manufacture and deliver it, and you have it! 

 

7. Where to find Lcut?


Lcut factory is located in Sichuan, China, You are welcome anytime to contact our sales to arrange a visiting tour of our factory and workshops online. 

Inserts For Difficult Materials

CBN inserts incorporating reinforced, chamfered edges eliminate the edge breakout common when cutting materials harder than 50 RC.

Materials hardened to 60 RC can have carbide particles hardened to 90 RC. When milling such materials, common coated carbide inserts suffer rapid flank wear.

Round carbide inserts afford advantages when machining hard steels. The profile provides a stronger tool without vulnerable sharp corners.

Fully hardened steels, hard powder-metals, heat resistant superalloys, and bimetals are all gaining broader acceptance in industry. While such materials deliver practically indestructible parts, they come with this difficulty: how to machine them to final shape at a reasonable cost per part. Fortunately, cutting tool suppliers have made dramatic advances in inserts for milling and turning the difficult materials. Today’s coated carbide, cermet, cubic boron nitride (CBN), and polycrystalline diamond (PCD) inserts all play a role. Advanced material inserts with special geometries and coatings withstand mechanical shock and heat while resisting abrasive wear. However, using these inserts productively can require various external factors—one of which may be a partnership with a knowledgeable tool supplier.

Because the cost of cutting inserts is relatively low—typically just 3 percent of total machining costs with carbide inserts and 5 to 6 percent with CBN—using cheaper inserts may be a false economy. Advanced material inserts can pay for themselves in shortened cycles times or more good parts per shift.

On the other hand, filling a large milling cutter with exotic inserts unnecessarily is a costly mistake. CBN inserts can cost eight to ten times as much as carbide. And running these advanced material inserts at the wrong speed and feed rate compromises part quality and tool life. With difficult stock, picking the right inserts requires an appreciation for both machining economics and the overall process.

Payoffs And Tradeoffs

Consider the entire application. Less expensive carbide inserts that can do the job in terms of tolerance and surface finish may be costly when the time spent indexing and replacing inserts is considered. Real productivity results from an understanding of the tradeoffs in throughput, cycle time and insert performance.

In one specialized, low-volume example, a sintered titanium carbide gas turbine blade was milled successfully with coated carbide cutting inserts. At 120 sfm, the carbide cutting edge cut well for just 5 to 10 minutes. Acceptable insert life is typically placed at 15 to 30 minutes in high volume production with difficult materials, but with a low-rate part, the short insert life and frequent tool changes are not major drawbacks. Longer insert life does become important in full production, however, to decrease tool-changing downtime and labor and to increase machine utilization and throughput. Carbide works well for the turbine blade for now, but should the part go to higher volume production, the application may justify harder, more costly inserts made of CBN.

Productivity with advanced material inserts requires adopting the right feeds and speeds. Sandvik Coromant’s CBN inserts incorporate reinforced, chamfered edges to eliminate the edge breakout common when cutting materials harder than 50 RC. Yet even despite this toughness, CBN inserts demand cutting machine parameters held to tight tolerances. Cutting speeds 10 percent too low or 10 percent too high can dramatically hamper performance.

If faced with the need to machine a difficult material, consider contacting your cutting tool supplier. Suppliers can offer solutions based on how others have approached the same problem. When experimentation is required, careful trial-and-error generally starts with carbide inserts and moves on to harder and more costly cutters. Modern insert geometries, rigid toolholders and refined machining routines often make less costly carbide inserts suitable for tough jobs. When to move beyond carbide will vary from application to application, but broad classes of materials do pose common machining challenges.

Hardened Steels

Steel alloys for many applications are becoming harder. While tool steels were once considered hard at 45 RC, steels hardened to 63 RC are now common in the die and mold industry. Mold makers who once cut parts only before heat treating are now precision machining tool steels in the fully hardened condition to avoid heat treating distortion. The heat and pressure encountered when milling the fully hardened alloys can cause plastic deformation in cutting inserts and rapid insert failure.

Even so, fully hardened steels can be machined economically with carbide. One example involves aerospace machining. A major aerospace manufacturer switched to Sandvik GC1025 carbide inserts to re-bore a massive forging of hardened Type 300M steel, 4340 modified. Most of the metal is removed before heat treating when the steel has a hardness of 30 to 32 RC. However, to correct for distortion, precision holes in the big workpiece must be re-bored once the stock is fully hardened to 54 or 55 RC.

One particularly challenging feature deep within the part requires three re-boring passes to achieve the required tolerance and finish. The hard material combined with interrupted cutting wore out cermet cutting edges after less than one pass. This was particularly alarming given that a broken edge could ruin a part. In contrast, advanced fine-grain carbide inserts with their tough physical vapor deposition (PVD) coating and sharp cutting action lasted from six to nine cuts. To exploit the carbide inserts, the tool supplier recommended reducing the cutting speed from 300 sfm to 175 sfm but retaining the same depth of cut. Three passes through the bore at this lower speed took about 20 minutes with carbide inserts versus more than an hour with cermet cutters. More important, the added edge security of the carbide inserts minimized the risk of a broken edge scrapping an expensive workpiece.

To establish machining parameters to mill hardened steels with carbide inserts, generally start at 100 sfm. Test cuts can build up to speeds from 150 to 180 sfm. Usual feed rate is 0.003 to 0.004 inch per tooth. Insert geometries with a neutral or slight negative rake typically provide stronger edges than positive-rake inserts. Round carbide inserts also afford advantages when machining hard steels. The profile provides a stronger tool without vulnerable sharp corners.

When choosing among carbide grades, consider toughened grades. They provide edge security against the high radial cutting forces and severe entry and exit shock encountered in hardened steels. Alternatively, specially formulated high-temperature grades can withstand the heat generated by steels hardened to 60 RC. Shock resistant carbide inserts with an aluminum oxide coating can also counter the high temperatures generated by milling hard steels.

Sintered Metals

Advances in powder metallurgy are producing extra-hard sintered metals for a range of applications. One manufacturer developed a powdered nickel composite alloy containing tungsten or titanium carbide to achieve hardnesses from 53 to 60 RC. The carbide particles within the nickel-alloy matrix can reach 90 RC. When milling such materials, coated carbide inserts suffer rapid flank wear, and their primary cutting edges wear flat. Extra-hard particles within the microstructure create “microchatter” that accelerates insert wear. Carbide inserts can also fracture under the shear pressure of machining the hard stock.

CBN inserts provide a productive means to cut hard powder metals containing tungsten and titanium carbides. Advanced geometries can overcome microchatter. One user milling the powdered composite alloy found that an advanced CBN insert lasted better than 2,000 times longer than the best carbide inserts. A five-insert face mill running at 200 sfm and 0.007 inch feed per edge completed test cuts in the hard stock 75 percent faster than electrical discharge machining.

To make best use of CBN, cutting parameters must be maintained within a tight band. Speeds around 160 sfm and feeds of just 0.004 to 0.006 inch per tooth appear slow, but they are highly productive when machining sintered materials. Exact machining parameters are best determined by 30- to 60-second test cuts. Start at low speeds and build up until cutting edges show excessive wear.

Difficult materials should generally be machined dry to maintain consistent temperature on cutting edges. In most cases, a rounded cutter with double-negative geometry is most effective, and depth of cut is typically limited to 0.04 to 0.08 inch.

Milling cuts are by definition interrupted cuts. The constant hammering in materials hardened to Rockwell 60 or higher causes unique machining stresses. Machines and tooling must therefore provide maximum rigidity, minimum overhang and maximum strength to accommodate the high shock loads during machining.

Superalloys

Heat resistant superalloys (HRSAs) developed for the aerospace industry are gaining broader acceptance in automotive, medical, semiconductor and power-generation applications. Familiar HRSAs such as Inconel 718 and 625, Waspalloy, and titanium 6Al4V are now joined by newer titanium matrix and aluminum-magnesium matrix materials. All pose machining challenges.

Superalloys are hard; some grades of titanium are machined at 330 Brinell hardness. With conventional alloys, cutting zone temperatures greater than 2,000°F soften molecular bonds and create a flow zone for chips. In contrast, the heat resistance that makes HRSAs so desirable keeps them hard throughout the machining cycle.

HRSAs also tend to work-harden as they are cut, notching cutting inserts to premature failure. The difficulty cutting HRSAs is compounded where unpeeled stock is covered with abrasive, knife-edged scale that wears cutting edges down even more quickly.

Given their machining difficulty, superalloys are cut slowly. For example, Inconel 718 is milled for brake keys with Sandvik GC2040 grade carbide inserts at 200 sfm. Turning speed for the same alloy with Sandvik 7020 CBN inserts in an outside turning/facing application is 260 sfm. By comparison, uncoated carbide inserts typically cut tool steels at 400 to 800 sfm. Feeds for HRSAs are generally comparable to those used when machining tool steels.

The choice of cutting inserts to machine HRSAs depends on the material and the workpiece. Carbide inserts with positive rake geometries will cut thin-walled HRSA stock effectively. However, thick-walled parts may require ceramic inserts with negative cutting edge geometry to create a more productive plowing action. While dry machining is preferred in most difficult materials to maintain uniform edge temperatures, titanium requires coolant even at very low speeds.

The sustained hardness of HRSAs accelerates wear on the nose radii of cutting inserts. A round insert with no sharp corner provides the strongest cutting edge, but the work-hardening common to HRSAs leads to progressive insert notching. Varying the depth of cut for consecutive machining passes avoids work-hardened zones, eliminates notch buildup, and prolongs the life of cutting edges. The depth of cut could vary from 0.300 inch on one pass to perhaps 0.125 inch and 0.100 inch on subsequent cuts.

Bimetals

Bimetal components put hard materials in select wear areas surrounded by or mixed with softer alloys. They are gaining popularity in the automotive industry and elsewhere, and they pose special machining challenges. The CBN inserts that are so productive cutting alloys with greater than 50 Rc hardness can fracture if they hit softer materials. PCD inserts able to machine abrasive aluminum suffer excessive wear cutting ferrous metals.

Machining bimetals productively calls for refined machining routines developed by the user, tool supplier and machine vendor. In one application, the hard powder metal composite alloy described earlier was hot isostatically pressed onto a less costly 316 stainless steel substrate. A helically interpolated tool path programmed into the machine control applied optimum feeds and speeds to machine the powder metal zone first, then the backing.

To machine bimetal cylinder blocks productively, automakers must contend with both abrasive aluminum alloys and cast iron cylinder liners. The design of the part means hard iron wear zones cannot be isolated from the soft aluminum. However, machine programs providing very low speeds and very light depths of cut enable abrasion-resistant PCD inserts to machine both aluminum and iron without frequent tool changes.

For more information, please visit china pipe cladding machines.