Types of Post Tensioning

23 Sep.,2024

 

Types of Post Tensioning

Types of Post Tensioning

Ruiyi are exported all over the world and different industries with quality first. Our belief is to provide our customers with more and better high value-added products. Let's create a better future together.

Bonded Tendons

Bonded post-tensioned concrete is the descriptive term for a method of applying compression after pouring concrete and during the curing process (in situ). The concrete is cast around a plastic, steel or aluminium curved duct, to follow the area where otherwise tension would occur in the concrete element.

A set of tendons are fished through the duct and the concrete is poured. Once the concrete has hardened, the tendons are tensioned by hydraulic jacks that react (push) against the concrete member itself.

When the tendons have stretched sufficiently, according to the design specifications (Hooke's law), they are wedged in position and maintain tension after the jacks are removed, transferring pressure to the concrete. The duct is then grouted to protect the tendons from corrosion. This method is commonly used to create monolithic slabs for house construction in locations where expansive soils (sometimes called adobe clay) create problems for the typical perimeter foundation. All stresses from seasonal expansion and contraction of the underlying soil are taken into the entire tensioned slab, which supports the building without significant flexure.

Post-tensioning is also used in the construction of various bridges, both after concrete is cured after support by false work and by the assembly of prefabricated sections, as in the segmental bridge.


Among the advantages of this system over unbonded post-tensioning are:

* Large reduction in traditional reinforcement requirements as tendons cannot de-stress in accidents.
* Tendons can be easily "woven" allowing a more efficient design approach.
* Higher ultimate strength due to bond generated between the strand and concrete.
* No long term issues with maintaining the integrity of the anchor/dead end.

Want more information on post tensioning system services? Feel free to contact us.

UnBonded Tendons
Unbonded post-tensioned concrete differs from bonded post-tensioning by providing each individual cable permanent freedom of movement relative to the concrete. To achieve this, each individual tendon is coated with grease (generally lithium based) and covered by a plastic sheathing formed in an extrusion process. The transfer of tension to the concrete is achieved by the steel cable acting against steel anchors embedded in the perimeter of the slab. The main disadvantage over bonded post-tensioning is the fact that a cable can de-stress itself and burst out of the slab if damaged (such as during repair on the slab).



The advantages of this system over bonded post-tensioning are:
* The ability to individually adjust cables based on poor field conditions (For example: shifting a group of 4 cables around an opening by placing 2 on each side).
* The procedure of post-stress grouting is eliminated.
* The ability to de-stress the tendons before attempting repair work.[3]

Picture number one (below) shows rolls of post-tensioning (PT) cables with the holding end anchors displayed. The holding end anchors are fastened to rebar placed above and below the cable and buried in the concrete locking that end. Pictures numbered two, three and four shows a series of black pulling end anchors from the rear along the floor edge form. Rebar is placed above and below the cable both in front and behind the face of the pulling end anchor. The above and below placement of the rebar can be seen in picture number three and the placement of the rebar in front and behind can be seen in picture number four. The blue cable seen in picture number four is electrical conduit. Picture number five shows the plastic sheathing stripped from the ends of the post-tensioning cables before placement through the pulling end anchors. Picture number six shows the post-tensioning cables in place for concrete pouring. The plastic sheathing has been removed from the end of the cable and the cable has been pushed through the black pulling end anchor attached to the inside of the concrete floor side form. The greased cable can be seen protruding from the concrete floor side form. Pictures seven and eight show the post-tension cables protruding from the poured concrete floor. After the concrete floor has been poured and has set for about a week, the cable ends will be pulled with a hydraulic jack.

Unbonded post-tensioned concrete differs from bonded post-tensioning by providing each individual cable permanent freedom of movement relative to the concrete. To achieve this, each individual tendon is coated with grease (generally lithium based) and covered by a plastic sheathing formed in an extrusion process. The transfer of tension to the concrete is achieved by the steel cable acting against steel anchors embedded in the perimeter of the slab. The main disadvantage over bonded post-tensioning is the fact that a cable can de-stress itself and burst out of the slab if damaged (such as during repair on the slab).The advantages of this system over bonded post-tensioning are:* The ability to individually adjust cables based on poor field conditions (For example: shifting a group of 4 cables around an opening by placing 2 on each side).* The procedure of post-stress grouting is eliminated.* The ability to de-stress the tendons before attempting repair work.[3]Picture number one (below) shows rolls of post-tensioning (PT) cables with the holding end anchors displayed. The holding end anchors are fastened to rebar placed above and below the cable and buried in the concrete locking that end. Pictures numbered two, three and four shows a series of black pulling end anchors from the rear along the floor edge form. Rebar is placed above and below the cable both in front and behind the face of the pulling end anchor. The above and below placement of the rebar can be seen in picture number three and the placement of the rebar in front and behind can be seen in picture number four. The blue cable seen in picture number four is electrical conduit. Picture number five shows the plastic sheathing stripped from the ends of the post-tensioning cables before placement through the pulling end anchors. Picture number six shows the post-tensioning cables in place for concrete pouring. The plastic sheathing has been removed from the end of the cable and the cable has been pushed through the black pulling end anchor attached to the inside of the concrete floor side form. The greased cable can be seen protruding from the concrete floor side form. Pictures seven and eight show the post-tension cables protruding from the poured concrete floor. After the concrete floor has been poured and has set for about a week, the cable ends will be pulled with a hydraulic jack.

The company is the world’s best post tensioning system supplier supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.