In Part 1, we explained the structure, functions, and types of oil seals.
Oil Seals (Part 1): The structure, functions, and types of oil seals
Oil seals come in various shapes to fit the machines and substances to be sealed.
For this reason, when designing a machine, it is important to select the oil seal that is right for that machine.
That's where this column comes in.
We will explain the key points for selecting the oil seal that is right for your machine.
Oil seals come in a wide range of types, and they also have various sizes.
When selecting the right oil seal for your machine from among these many varied types of oil seals, the following two criteria are very important.
If these criteria are met, damage of the machine can be reduced, the time needed to replace the oil seals when performing repairs can be shortened, and the machine can be used for a longer period of time.
In this way, selecting the appropriate oil seal will lead to machine design that is economically superior!
In general, oil seals should be selected in the order of priority indicated in Table 1.
However, when you actually select the oil seal to use, the most important factors are past success history and points of improvement, so it is not necessary to follow this order to the letter.
Select your oil seal type according to Table 2.
Seal selection example
Based on the above flowcharts, the oil seal type that meets the requirements shown in Table 3 would be the type code MHSA or HMSA shown in Table 4.
Shaft surface speed
(peripheral speed)
6 m/s 5 Air-side condition DustyFor a more detailed discussion of seal types and type codes, please see the following:
The rubber material used in the oil seal should be selected based on the operational temperature and substance to be sealed.
Table 5 lists the major rubber materials along with their operational temperature ranges.
Note that it is necessary to check the compatibility with fluids.
N.B.
Extreme pressure additives are compounds added to the lubricant. They are activated by heat and chemically react against rubber, which deteriorates rubber properties. For this reason, it is necessary to check for compatibility with rubber materials.
Nitrile rubber (NBR)
Standard typeWell-balanced in terms of resistance to abrasion and high and low temperatures
-30100
Necessary to check compatibility with fluids
(See *2)
Fluids
Fuel oil
Lubricating oil
Hydraulic fluid
Grease
Chemicals
Water
110
Hydrogenated nitrile rubber (HNBR)
Standard typeCompared with nitrile rubber, superior in resistance to heat and abrasion
-30140
Acrylic rubber (ACM)
Standard type High oil resistance and good abrasion resistance -20150
High- and low-temperature-resistant type Improved low temperature resistance and same level of heat resistance as the standard type -30150
Silicone rubber (VMQ)
Standard type Wide operational temperature range and good abrasion resistance -50170
Fluoro rubber (FKM)
Standard type The most superior in resistance to heat, and good abrasion resistance -20180
Notes
*1 ASTM: American Society for Testing and Materials
*2 For more details on fluid compatibility, please see the following:
Rubber materials, operational temperature ranges and their compatibility with fluids
The metal case and spring material used in the oil seal should be selected based on the substance to be sealed.
Table 6 shows how to select the metal case and spring materials.
Substance to be sealed Material Metal case Spring
Cold rolled carbon steel sheet
(JIS* SPCC)
Stainless steel sheet
(JIS* SUS304)
High carbon steel wire
(JIS* SWB)
Notes
* JIS: Japanese Industrial Standard
: Compatible
: Incompatible
: Not applicable
Oil seals can show good sealing performance in combination with properly designed shafts and housings.
Table 7 shows the shaft design checklist.
Dingtong contains other products and information you need, so please check it out.
a) Good finished surfaceTable 8 shows the housing design checklist.
Nominal seal width
b, mm
Nominal seal O.D.
D, mm
F
mm Over Up to 10 D - 4 10 18 D - 6 18 50 D - 8When the total eccentricity is excessive, the sealing edge of the seal lip cannot accommodate shaft motions and leakage may occur.
Total eccentricity is the sum of shaft runout and the housing-bore eccentricity.
Total eccentricity, shaft runout and housing-bore eccentricity are generally expressed in TIR (Total Indicator Reading).
The allowable total eccentricity is the maximum total eccentricity at which the sealing edge can accommodate shaft rotation and retain adequate sealing performance. The oil seal's allowable total eccentricity is affected by the design of the oil seal, the accuracy of the shaft, and the operating conditions.
For details on shaft and housing design, please see the following:
Examples of allowable total eccentricity for oil seals
Oil seal performance is affected by not only the type and material of the selected oil seal, but also a variety of other factors, such as operating conditions, total eccentricity, rotational speed, the substance to be sealed, and lubrication conditions.
Figure 9 shows items relating to oil seal characteristics.
For a more detailed discussion of seal characteristics, please see the following:
Seal characteristics
When selecting the oil seal that is right for your machine, it is important that the oil seal be appropriate for the requirements of the usage environment and that it be easily acquired for replacement.
In this month's column, "How to select the right oil seal," we conveyed the following points:
1) Oil seal shape and material should be selected based on the housing, substance to be sealed, pressure, rotational speed, total eccentricity, and air-side conditions.
2) Oil seals can show good sealing performance in combination with properly designed shafts and housings.
3) Oil seal performance is affected by not only the type and material of the selected oil seal, but also a variety of other factors, such as operating conditions, total eccentricity, rotational speed, the substance to be sealed, and lubrication conditions. For this reason, diligent care is required in oil seal selection.
In order for the sealing property of the oil seal you selected to really shine, attention needs to be paid to how it is handled.
In the event of seal failure, it is necessary to take effective countermeasures.
We will cover these points in the next column, "Oil Seals (Part 3)".
If you have any technical questions regarding oil seals, or opinions/thoughts on these "Bearing Trivia" pages, please feel free to contact us using the following form:
Different Types of Oil Seals
Are you looking to keep your machinery free from any unwanted leakages but arent sure which rotary shaft seal is right for your needs? This guide will provide you with everything you need to know in order to select the right one for your application.
Oil seals, which are also known as rotary shaft seals, fluid seals or grease seals, play an important role in closing down the gaps between moving and stationary elements of mechanical equipment.
By preventing lubricants from escaping, they protect key components of machinery from being damaged by leaks of various fluids. Everything from car engines to assembly machines use these oil seals to remain free from any harmful interactions that can cause serious and expensive damage to any of their critical parts.
There are a wide range of oil seals to select from for any number of uses, so this guide will break down the most common seals to help you choose the right one for whatever piece of machinery you are working on.
What are rotary shaft seals?
Rotary shaft or oil seals are placed between moving and stationary pieces of machinery to ensure that contaminants, moisture, corrosive materials and abrasives do not damage the various components. They can also prevent unwanted mixing of fluids, including water and oil combining within a machine.
How are Oil Seals made?
First, an elastomer, most often nitrile, is vulcanised to a metal ring. This creates a stiffening effect that includes a specialised metal tension spring directly behind the sealing lip, keeping the oil seal firmly in place against the moving part.
Oil Seal Materials
There are many different materials used to manufacture oil seals.
Leather Oil Seals - Leather Seals, also known as Type L Oil Seals, are most common in components that are subject to dirt and poor lubrication. Since they come pre-lubricated and are able to absorb fluids, leather oil seals are able to provide sealing properties in conditions that synthetic rubber is unable to.
Synthetic Rubber Oil Seals - Styrene Butadiene Rubber oil seals, or just SBR oil seals, offer strong resistance to abrasions and lesions, making them an ideal seal for fast-moving machinery. With the ability to withstand extreme temperatures with its heat-aging qualities, they can be used in outdoor components. They are also seen as more cost-effective oil seals than natural rubber.
Nitrile Oil Seals - Nitrile oil seals, which is the commonly used term for acrylonitrile-butadiene rubber seals, is a very good general-purpose option due to the flexibility of use across a variety of components. The resistance is strong against fats, hot water, gasoline, mineral oils, grease and animal oils, making them the most often-used oil seals. They do not have a wide temperature range, making them a poor choice for machinery that can see extreme changes in temperature.
Viton Oil Seals - A synthetic rubber and fluoropolymer elastomer, Viton is used to make oil seals that provide resistance in both high temperature, up to 250°C and low compression set components. They also offer a high resistance to chemicals and abrasions, so they can be used in elements that regularly interact with petroleum and solvents.
Polyacrylate Oil Seals - Mostly selected for automotive and transmission uses, polyacrylate seals are able to withstand fuel, oil, ozone, sunlight and weather when used. With cars exposed to all these different fluids and elements, they are the perfect choice. However, they should not be used in low temperatures, as their flexibility weakens when cold.
Silicone Oil Seals - Designed to absorb lubricants in order to lessen wear and friction, silicone rotary shafts also offer high thermal resistance and a large temperature range. But, they do not handle abrasions well or interact with oxidized oils.
PTFE Oil Seals - A relatively new and exciting oil seal, the use of polytetrafluoroethylene means that they can withstand dry or unlubricated operations. With a massive thermal range of -130ºC to +200ºC and a strong resistance to chemicals, they are considered to be the future of rotary shaft seals.
How to Choose the Right Oil Seal
There are several key factors to consider when you are selecting the oil seals for your next project to ensure that you protect your machinery from immediate and long-term damage.
Pressure - Many oil seals can only withstand low-pressure applications, so understanding the compression set of your components is key.
Temperature - Just like pressure, the temperature that your oil seal will be operating in must be known so that you can choose one that can withstand the heat or cold. PTFE have the widest range of temperature, making them useful for machines who can see usage in extreme weather or elements.
Shaft Speed - Considering the speed that the shaft will be moving, the runout, the housing bore and the type of oil being sealed is vital to making sure you select an oil seal that will not suffer from abrasions or spiralling.
Fluid Types - Various oil seals are able to withstand interactions with oils, fuels, grease, water and more. Knowing what type of fluid the rotary shaft seal will be in constant contact with will ensure the longevity of the seal and surrounding components.
Lubricant Amount - Seals will always perform best when lubricated, however in some machines there are more likely to be dry spells. For these cases, selecting a leather or PTFE seal will be beneficial, as both can operate with less lubrication than others.
If you require any assistance in discovering the factors that lead to the right oil seal choices, the Simply Seals Team is happy to assist you!
Find the right Oil Seal for your needs with Simply Seals!
With dozens of specifically-designed oil seals made from a variety of materials, it can be very difficult to understand the best choice for their machinery.
That is why the Totally Seals team is always available to assist you with choosing the correct style, material, and size of oil seal for everything from commercial machinery to hobby car building.
Contact us today to make sure that you select the proper rotary shaft seal that will protect your components and lead to a long, healthy life for all of your machines!
If you want to learn more, please visit our website pu oil seal.